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Experimental results are presented for the speed of travel of the spherical vortex 
a t  the front of a suddenly switched on, submerged, laminar jet in the Reynolds 
number range 80 < Re < 500. The results show that the speed of advance of the 
front is approximately one half of the speed of a fluid element on the axis of 
the steady jet. The experimental data are well correlated by an approximate 
model of the jet-vortex interaction in which the vortex is treated as a liquid drop 
with averaged properties. An auxiliary result is a new correlation for the axial 
variation of the velocity of a steady jet. 

1. Introduction 
Instantaneous switching on of submerged laminar jets is widely used in fluid 

amplifiers of many types, and in turbulence amplifiers in particular. The know- 
ledge of the transient behaviour of these jets is essential to the proper design of 
these amplifiers. Yet, though the stea.dy-state behaviour of all types of jets has 
been studied quite extensively, it seems tha,t relatively little is known regarding 
the initial transient process. Therefore, it is the purpose of the present paper to 
describe and analyse the transient behaviour of submerged jets in response to 
instantaneous switching on. 

Visual information can be obtained by injecting dye into a liquid jet. One 
can then identify at the front of the suddenly operated jet a spherical ball of 
liquid, which increases in diameter and moves forward on the axis of the jet. 
(Photographs of such liquid balls have been published by Batchelor (1967); 
see in particular stages 1 to 6 in his figure 7.2.2, plate 20, taken from a paper by 
Okabe & Inoue.) Changes in the volume and velocity of the ball are due to some 
jet liquid entering the ball, carrying with it linear momentum and vorticity 
which are added to the momentum and vorticity of the liquid inside the ball. 
At the same time the forward motion of the ball is retarded by the fluid in the 
surroundings, which has to be accelerated in order to make way for the approach- 
ing jet. Because of the relative velocity between the ball and its surroundings, 
one must also take into account the momentum lost owing to viscous friction. 

A detailed exact solution of this problem based on the full equations of motion 
including viscosity seems to be too complicated to be practical. Similarly, in 
view of the complicated geometry and the continuous axial movement, it is 
practically impossible to make direct measurements of the inner velocity field of 
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FIGURE 1. Experimental set-up. 

the ball. Nevertheless, interesting and significant information can be obtained 
by measuring the forward axial motion of the ball as a whole, i.e. the distance of 
the ball from the tube exit as a function of time. This can be done with the aid 
of hot-film or hot-wire probes installed on the axis. Likewise, an approximate 
analytical solution can be obtained from a simplified model which regards the 
ball as a finite element and correlates its integral properties using overall con- 
servation laws. This approach is similar to that of Turner (1957, 1959, 1962), 
who analysed the motion of droplets falling in a liquid under the action of gravity 
and of a rising buoyant plume. 

In  this paper we present the results of measurements of the forward motion 
of the ball, and an analytical solution based on a simplified integral model as 
described above. The experiments were made in the range Re = 80-500, which 
is of interest in turbulence amplifiers. The fluids used were water-glycerol 
mixtures and air. It will be seen that these results provide a reasonable physical 
picture of the phenomena and yield daka directly relevant to  the analysis of 
fluidic elements. 

2. Experimental set-up 
To investigate the transient behaviour of the jet for different values of viscosity, 

the measurements were carried out in air and in water-glycerol mixtures (68, 72 
or 74 yo glycerol). The apparatus used for the measurements in liquids was a large 
(20 x 20 x 80 em) bath with a long tube protruding through the wall (figure 1) .  
The tube’s internal diameter was 12 or 6 mm and its length 1200 mm. For measure- 
ments in air the set-up was a 6 mm I.D. tube inside a 80 mm I.D. cylindrical wind 
tunnel. 

The flow of liquid in the supply line was controlled by an electrically operated 
valve. A traversing hot-film probe was located on the tube axis. By repeating the 
switching process with the hot-film probe located at  various distances x from the 
tube outlet, and measuring the time intervals between the valve opening and the 
appearance of a signal a t  the probe, a complete x(t)  record of the ball motion was 
obtained. Furthermore, after the ball has passed and the jet has become estab- 
lished, the same probe yielded a measurement of the steady-state velocity on the 
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jet axis. Each measurement was taken 3-5 times. The estimated overall ex- 
perimental error is within rt. 5 %. 

3. Steady-state jet 
The maximum velocity in the established jet was measured in air and in 

water-glycerol mixtures in a range Re = 80-500 over axial distances x /D = 0-40, 
where Re = U, D/v is the Reynolds number based on the tube diameter D and the 
mean tube velocity U,. The results are best correlated in the form U* = Umz/Um, 
as function of x* = x / D  Re*, where Urn, is the maximum velocity at x and Urn, 
is the maximum velocity at  tube outlet. Assuming, as usual, that the maximum 
velocity of a given jet decreases in inverse proportion to the distance from a virtual 
source, we obtain the relation (figure 2) 

U* = l / (ax*+b),  a = 1-13, b = 0.89, (1)  

which holds in the range x* > 0-2. This result can now be used to check whether 
momentum is conserved between the tube and the jet and to obtain an expression 
for the distancc of the virtual source from the tube outlet. Recasting (1) in the 
familiar (dimensionaJ) form 

Urn = A/Z, (2) 

where = x + x, is the distance from the virtual source and A is a constant for 
a given jet, we obtain from the present measurements, with U,, = ZU, (parabolic 
profile in the tube), 

On the other hand, for the fully developed jet Schlichting (1968, p. 220) shows 
that 

A = UrnOD Regla = 2v Re%/a. (3) 

where H is the momentum. If one assumes that momentum is conserved in the 
developing region, then on equating the momentum of the jet with the momentum 
of the tube flow, M / p  = &r Re2 v2, one gets 

A = &vRe2, (5) 

which is in contradiction with our experimental result, equation (3). This shows 
that momentum is not conserved in the region of development, which has 
already been mentioned by Sat0 & Saka.0 (1964) for a two-dimensional jet, in 
which they found that the ratio of the jet momentum M to the pipe flow momen- 
tum No isM/M, = 0.5-0.8, the loss being due to shear at  the outer wall of the tube. 

The distance x, of the virtual source from the tube outlet is obtained from 
(1) as 

xo = (b/a)DRe* = 0.79DRe4, (6) 

which is at  variance with Andrade & Tsien’s (1937) often-quoted result 

x, = 0.04D Re. (7 )  
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FIGURE 2. Maximum velocity of the jet. 0 ,  air at 20 "C, 755 mm Hg; +, D = 1.2cm, 
v = 0.217cm2/s; #, D = 0.6cm, v = 0.148cmZ/s; X ,  D = 1.2cm, v = 0.148cm2/s; 0, 
Andrade & Tsien; -, equation (1).  

Figure 2 represents our experimental results for Ums/Um0 versus x* = x /D  Re*, 
including some points given by Andrade & Tsien, recalculated in terms of the 
present co-ordinates. By comparing our points with those of Andrade & Tsien, 
we fkd good agreement and, moreover, find that in the present scaling their 
experimental results are much better correlated than in the form (7) suggested 
by thein originally. To see that the present form is more accurate, one should 
bear in mind the following points. 

(i) Here we deal with a jet issuing from a long pipe, in order to have a fully 
developed parabolic profile at  the outlet for every Reynolds number, while in 
Andrade & Tsien's work there is an uncertainty about this profile. (They assumed 
that for Re > 80 the profile a t  the exit of the tube was flat. Yet it is possible to 
show by recalculating their results that for some points V,,.U, > 1,  which means 
that the profile could not have been flat.) 

(ii) Here we have results for different Reynolds numbers, different fluids and 
different pipe diameters, while Andrade & Tsien's results are based on ex- 
periments done for water and one pipe diameter only. 

(iii) .Andrade & Tsien's correlation is biased by the assumption that the 
momentum is conserved, which they used to calculate the velocity profiles of the 
jet bast3d on the momentum in the pipe. 

Thus our results (equation (l)), which are in good agreement with the generally 
accepted relation Urn, = A/(z  + xo) ,  show that the constants A and x, cannot be 
evalua1)ed from an assumption of conserved momentum and from Andrade & 
Tsien's correlation but are given by the present equations (3) and (6). 

4. Transient behaviour 
4. I .  Experimental results 

The axial motion of the ball of fluid at  the head of the jet yields the hot-film 
signals shown in figure 3. A t  each position x we can discern a time lag between 
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FIGURE 3. Velocity-time signals at different axid positions. 

the moment when the ball leaves the tube outlet and the moment when a flow 
velocity is observed at  x. Subsequently, there is a rise time, during which the 
velocity grows to its final steady value, corresponding to the steady (but not 
developed) jet. In  some cases an initial overshoot was observed, and was probably 
due to internal circulation in the ball (recall that the axial velocity at the centre 
of Hill's spherical vortex is $ times the velocity of the vortex as a whole), but 
was also dependent on the rapidity of the valve opening. Since the transition 
between the rise period and the ultimate steady value (for which the jet is in 
the 'on' position) is smooth, we define the travel time t of the fluid ball as the 
time interval from the moment it leaves the tube outlet until the moment the 
velocity a t  x reaches 70 yo of its final steady value. Clearly, this travel time t is 
a fundamental parameter in the analysis of fluidic elements. 

Scaling x and TI as before, and t accordingly, t" = 2tvRe4/D2, we can plot 
t* vs. x* for various D, v and U, (figure 4). Within the range of parameters dealt 
with here, the results are fairly well correlated by the relation 

t" = CX"'+dx*, G = 1.85, d = 1.6. (8) 
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FIGURE 4. Travel time of ball as a function of distance: experimental. x , air, D = 0.6cm. 
Glycerol: .,v= 0.148cm2/s,D= 1.2cm;O,v= 0.148cm2/s,D= 0~6cm;0,v=0.217cm2/s, 
D = 1.2 cm; + , v = 0.256 cm2/s, D = 1.2 om. -, average travel time, equation (10); 
--, minimum travel time; - - --, maximum travel time; -.-, travel time of a fluid element 
in steady jet, according to (1). 

Hence we obtain the velocity of the ball: 

Ug = dx*/dt" = 1 / ( 2 ~ ~ *  +a*). (9) 

Note th.at, although the form of U$ in (9) is similar to that in ( l ) ,  the numerical 
values of the coefficients are different, in accordance with the fact that the 
velocity of the ball is lower than the velocity of the fluid on the axis of the steady 
jet at  the same axial position. The travel time of the ball is about twice as long 
as the travel time of a fluid eIement on the axis of the steady jet. 

Examination of figure 4 shows that up to x* z 0.7 the points are distributed 
in a narrow band. For greater distances the points are much more scattered. 
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FIGURE 5 .  Interaction between jet and ball. 

This fact can be explained as follows. For short distances the direction of the 
motion of the ball at  the front of the jet is exactly axia,l. Later, because of 
instabilities (such as ‘pedal breakdown’; see Reynolds 1962) the ball changes its 
direction. This change causes the increase in the time response, which cannot be 
defined exactly, but one can say that the line passing through the lowest points 
measured is that which describes the time response of a completely stable jet. 
This line can be represented in the same form as (10) except that the constants 
are changed, namely c = 1.4 and d = 1.3. On the other hand, for the design of 
fluidic elements one may need the maximum switching times, taking account of 
instabilities, given by the upper envelope in figure 4, which can be represented 
by (10) with c = 2-4 and d = 1.95. 

4.2. Theory: the liquid-drop model 

We consider the flow in the front of a suddenly operated jet as a spherical vortex 
flow interacting with a steady jet, and adopt an approximate model based on 
an integral momentum balance, similar to Turner’s (1959) model. 

A spherical mass with volume V, travels on the axis of the jet with a velocity 
U, (different from the maximum velocity Urn, of the jet at the same axial position). 
The jet impinges on the fluid ball, so that some fluid enters the ball and causes it 
to grow. In  the absence of sufficient information on the details of the vortex 
flow we assume the following properties of the ball. The ball consists of fluid 
transferred from the jet only. Its velocity U, is determined by the interaction 
between the ball and the jet and the drag forces between it and the surroundings 
as obtained from liquid-drop models (Winnikow & Chao 1966). No specific 
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assumption is made regarding the internal flow field in the ball. (In the present 
model we omit any possibilities of instabilities, which, in fact, are present.) 

The interaction between the spherical mass and the jet is explained with the 
aid of figure 5. The jet is moving in the x direction. The tail of the vortex moving 
in the same direction is found at instant t a t  point 0. If we draw on the jet two 
lines a and b at instant to (the line a has a form similar to the velocity profile of 
the jet), at  a later moment to + At the configuration of the lines will change so that 
we have lines a' and b' instead of a and b, while the ball located initially at  0 
moves to B'. 

The axial distance between a and a' is UAt. Here we find that the quantity 
of fluid enclosed by the curve OABCO, which at to is behind the vortex, is changed 
during At to that described by O'A'B'C'O', which at time to + At is in front of 
point B' (the tail of the vortex). This means that this quantity has entered the 
vortex and become a part of it. This entrainment is characterized by the point A,  
which is the ' cut-off radius' or the position where the velocity of the jet and the 
velocity of the vortex are equal. 

The entrained mass inflates the sphere and causes a change in its momentum. 
The influence of the fluid in front of the jet on the movement of the sphere can 
be separated into two parts. 

(i) The liquid at some distance away from the ball is accelerated in nearly 
potential flow in order to make way for the approaching jet. This acceleration 
is associated with a rate of change of momentum (Milne-Thomson 1968, p. 491) 

dM/dt = O . ~ / I [ ~ ( U B V B ) / ~ ~ ] .  (10) 

(ii) A thin film of liquid surrounding the ball has a viscous motion like a free 
boundary layer on a liquid sphere. The drag force on the sphere can then be 
represented as 

where C ,  is a drag coefficient. A reasonable approximation for this coefficient 
is to use data obtained for falling droplets, bearing in mind that the cases are 
not identical and that second-order effects will be different in the freely falling 
droplet and in the ball followed by a jet. In  the present analysis the leading 
term of Winnikow & Chao's (1966) drag coefficient (for equal density and viscosity 
of the ball and surrounding fluid) 

40 0.814 c -- I+- 
D - R e B (  neb) 

was used and gave good agreement with experimental data. The leading term of 
Harper & Moore's (1968) improved theoretical expression C ,  = 120/ReB was 
also tried, but gave results much higher than the measurements. Thus, apparently 
Winnikow & Chao's drag coefficient (12) is a good approximation for the drag 
on the ball pushed by a jet. 

With these assumptions, the rate of change of the volume of the sphere due 
to the entrance of the jet is 
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where Us(r) is the velocity of the jet, Us - UB is its relative velocity and ro is the 
cut-off radius, at which the relative velocity is zero, and the rate of change of 
momentum is 

L - / - -  

Change of momentum due to Acceleration Drag 
entrainment of the jet of virtual force 

into the ball mass 

The two equations (13) and (14) determine the two unknown variables VB and 
MB (or DB and U') as a function of time t, assuming that the velocity profile l&(r) 
is known. 

Near the pipe exit (x* < 0.2) the jet profile can be assumed to be the same as 
in the pipe, i.e. parabolic: 

(at x* = 0.2 the difference between Urn, and U,, is less than 10 yo). In  this region 
the cut-off radius is 

us = urno[l- (T/RS)~I (15) 

rt = - (uB/urnO)I R:. (16) 

The expression for the rate of change of volume of the spherical mass, equation 
(13), is then 

and the momentum equation (14) reduces, by straightforward manipulations, to 

dvB/dt = & S O L 1  - (uB/umO)12 (17) 

where M, = +R2U&, is the kinematic momentum in the pipe. Introducing the 
dimensionless quantities x*, t* and U* defined above, we find a set of three 
equations which have to be solved simultaneously: 

d Vg/dt* = (n/8Beo) (1 - Ug)2, 

dUs/dt* = (m/18Re0 V:) ( 1 - ~ U ~ + ~ U ~ 2 - W * 3 ) - $ F * ,  4 B  

dx"/dt* = ug. 
Here F* is the non-dimensional form of F'/pVB: 

These equations hold in the region in which the jet profile can be approximated 
by that of the pipe flow (x* < 0.2). 

I n  the region x* > 0.2 we assume the interaction to be between a fully de- 
veloped steady jet and a spherical ball. The jet velocity profile is 

A 1 u -  s - F [1+ B ( r 2 / X 2 ) ] 2  ' 

where A1.B = 8u and the flow rate is Q, = 8nvZ. Here we get the cut-off radius as 

ri = [(A/UBZ)g - 11 Z2/B. (22) 
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FIGURE 6. Travel time of ball as a function of distance. __ , theoretical. Experimental 
(70 yo ' on'): - x -, average travel time; - - , minimum travel time; - - - -, maximum 
travel time. -.-, travel time of a fluid element in steady jet, according t o  ( 1 ) .  

Substituting (22) and (21) into (13), we get the rate of change of volume of the 
spherical mass: 

dvB/dt = &,[I - (UB/u,)']', (23) 

where Urn, is the maximum velocity of the jet a t  point x. The momentum equation 
(14) yields, after some manipulation, 

and, introducing again the non-dimensional variables, we obtain the set of 
equations for x* > 0.2: 
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dx*/dt* = U g .  

From flow visualization (cf., for example, Batchelor 1967) one can see that the 
initial shape of the vortex moving in front of the jet is that of a mushroom with 
a, diameter approximately the same as the diameter of the pipe, the shape be- 
coming spherical very soon afterwards. The diameter changes are small near the 
pipe outlet. Therefore, we take the initial value of the volume of the ball moving 
in front of the jet as that corresponding t o  the diameter of the pipe. Further, a t  
the initial instant the ball is constrained by the pipe, so that the initial velocity 
of the ball is equal to the mean velocity in the pipe, which is assumed to undergo 
a nearly instantaneous step change. 

The initial conditions for equations (19) are then 

U, = Us,,,, = 0*5Us,,,, V, = +nD3. (26) 

The numerical results of (19) a t  x* = 0.2 are the initial conditions for (25). 
Equations (19) and (25) were solved by a numerical procedure where we could 

easily change every parameter needed. (In fact, we could adopt different drag 
coefficients instead of (12) and also change the initial conditions.) The results are 
given in figure 6, which shows the distance versus time computed from the model, 
with drag forces defined by Winnikow & Chao, together with the experimental 
curves. It may be seen that the agreement is quite good, the computed results 
falling inside the band of scatter of the experimental data. Note that the theo- 
retical model gives a weak dependence on the Reynolds number (in the x*, t* 
co-ordinates as defined here). In the experimental data, the dependence on Re 
is obscured by the scatter due to instabilities, which the present model cannot 
predict. 
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